
BETA BASIC NEWSLETTER No. 7

Welcome back to all the re-subscribers, and greetings to the many
new subscribers! Most new subscribers have ordered the 6 previous
issues as a set. I would recommend those who have not done so to do
so now, because the information in the earlier Newsletters is still
very useful, and I do not intend to cover the same topics again.

There are, however, two points to note when reading Back-issues:

1. References to bugs in earlier Newsletters may no longer be valid.
Before "correcting" a copy of Beta Basic, make sure that it has not
already been corrected - see if you can duplicate the bug - or the
suggested cure may cause problems.

2. If you are using Beta Basic 4.0, examples that POKE machine code
into the former printer buffer should be modified to use some other
location, such as just below BB's code, or in the UDG area.

**
BETA BASIC 4.0 BUGS - AND AN EXTRA FEATURE.

Beta Basic 4.0 seems to be fairly bug-free, fortunately. The two
bugs so far known are easily cured. Both were reported by Charles
Buszard, for which I thank him. The bugs may have been mentioned in
labels inside the cover of your BB 4.0 manual.

The first bug interfered with Beta Basic's operation of parallel

printers. Location 63866 should hold 150 - if it doesn't, POKE it.

The second bug was a corruption of the RENUM routine which deals
with GOTO/GOSUB etc. expressions. This caused a crash when e.g. GO
TO x was renumbered. It can be cured by:

POKE 60413,40: POKE 60414,15

I managed to add one extra feature between the time the manual
went to the printers and the time the cassettes were copied. The
LENGTH function works with RAM disc arrays to give their dimensions;
e.g.:

10 DIM !fred$(100,10)
 20 PRINT LENGTH(1,"!fred$()")
 30 PRINT LENGTH(2,"!fred$()")

This gives 100 and 10. LENGTH with a zero parameter gives a
meaningless value with RAM disc files.

-2-

NEW INSTRUCTIONS FOR THE DISCIPLE DISC DRIVE INTERFACE.

Unfortunately, the instructions in the last Newsletter and the BB
4.0 manual for using BB with the Disciple have been made obsolete by
the release of version 3 of the interface. The Newsletter item also
sparked a lot of "what do I do if I have BB 3.0? letters. Well, the
item was for either BB 3.0 or 4.0 - but particularly for BB 3.0
users who didn't have the advice contained in the BB 4.0 manual.
Sorry this wasn't clear.

With the newer Disciple version 3 (and probably earlier versions
too) I now suggest the following:

To copy Basic 3.0 or 4.0 to Disciple disc, load the program from
tape, then MERGE the first (Basic) part again. Alter the SAVE and
LOAD commands in lines 1 and 2 to the Disciple syntax. You might
want to alter "Beta Basic" in line 1 to "Autoload". RUN to save the
program to disc.

The disc commands will work normally as direct commands, with the
exception of CAT, which requires CAT #2;1. You can write a procedure
to avoid this if you wish:

10 DEF PROC dir device
 CAT #2;device
 END PROC

Now DIR 1 will catalogue disc one.

Disc commands used in programs may cause Beta Basic to lose
control of the system. It is a good idea to turn Beta Basic off
using RANDOMIZE USR 59904, use the disc command, and then turn Beta
Basic on again with RANDOMIZE USR 58419. Disc errors will always
turn Beta Basic off and require USR 59419 to turn it on again. Use
of DEF KEYS can make life easier.

NOTE: I have been using the disc drive from my OPUS with the
Disciple interface. People tend to say that "the OPUS is a slow disc
drive", but it appears that the interface is slow, not the drive.
The disc drive runs 5 or 6 times as fast when connected to the
Disciple unit. To make the connection, I used a couple of 2*17 way
dil IDC (insulation displacement - no soldering!) sockets and a
length of cable, bought from Maplin, to make up a lead. You have to
remove the OPUS cover and connect the cable to the back of the disc
drive in place of the one that comes from the circuit board. (If you
connect the socket upside-down, the system won't work but you can
just turn the socket over and try again. By the way, I am not
responsible if you damage something or electrocute yourself!) The
OPUS unit needs to be switched on to power the drive, but it is not
attached to the Spectrum except via the cable to the Disciple.

My thanks to ROCKFORT PRODUCTS for the loan of the Disciple.

-3-

PRINTERS - A BB BUG

I recently discovered a fairly nasty bug in BB 3.0 which corrupts
the printer buffer when a vertical ROLL or SCROLL which includes the
attributes is carried out. This unfortunately happens when you use
the up and down cursors to scroll through the listing: the same
routine is used. The problem is that a line of machine code that was
supposed to say: LD DE,5C92H became: LD DE,5892H. The line gives the
start of a memory area to be used as a temporary store for a row of
attributes. The error means that instead of 32 bytes in the system
variables area (MEMBOT and 2 bytes labelled "not used") being used,
a 32-byte chunk of the printer buffer is altered. The normal
attributes or black-on-white are 00111000 in binary; this caused
some users to observe a line of dashes in the first line of a
listing produced by a ZX-type printer. (I was never able to
reproduce this fault - I suppose I never scrolled through the
listing at the right time!)

The ZX printer effect is harmless, but if your printer is run by
software that uses the printer buffer it may go wrong (perhaps only
when you use particular features of the software.) I am very sorry
for the problems that this must have caused some users - I am sure
people must have noticed but never found an easily reproducible
example to send me! To correct the fault, you can simply POKE
59727,92 to force the code to its original form. (This fix is
included in the first versions of BB 4.0 - DPEEK(59726) will give
23698.) However, the original form may not be very good either,
because I have since learned that both the Kempston "E" and the ZX
Lprint III use the "not used" system variable. Poking in 255 would
use the UDG area of UDGs H-L, which is a simple correction.
Alternatively, use the program below to create and use a 32-byte
attribute storage area above RANTOP. (As implemented in later BB
4.0's.) Account is taken of any DEF KEYS and WINDOWS you may have
defined.

10 CLEAR 32
 20 LET S=DPEEK(23730)+2
 30 DO UNTIL PEEK (s-1)=0
 40 LET s=s+3+DPEEK(s)
 50 LOOP
 60 DPOKE 59726,s

**
CONCERNING LETTERS

Just a quick aside to fill the bottom of this page! I get a lot
of very interesting, encouraging and friendly letters from all over
the world, which I enjoy, reading. When there is some particular
problem involved, I almost always manage a reply. (The exceptions
might be an obvious "pirate" lacking a manual, or when the topic is
about to be covered in a Newsletter.) Even when there is no problem
to solve, I often manage a quick "Glad you are enjoying yourself!"-
type note with, say, an upgraded tape, in the U.K. Unfortunately, I
cannot usually send such personal notes with foreign packages - a
higher rate of postage is involved! This is because "Small Packets"
cannot contain personal letters.

-4-

PRO- mirror - mirroring characters

This contribution is from Robert Dickson of London. The procedure
will mirror a character, either on the screen, or elsewhere in
memory, such as the UDG area. The first parameter is the address to
be, mirrored, and the second is the destination of the data (usually
the same). Line 1010, checks to see if the source of the data to be
mirrored is in the screen memory, and account of its odd
arrangement, if necessary.

10 PRINT "<this is a test of mirror PROC>"
 15 FOR n=16384 TO 16384+31
 20 mirror n
 30 NEXT n

1000 DEF PROC mirror p,q
 DEFAULT p=16384,q=p
 LOCAL n,a$,b,x,y
 1010 IF p>=16384 AND p<=22577 THEN
 LET x=2043,y=256
 ELSE LET x=8,y=1
 1020 FOR n=p TO p+x STEP y
 LET a$=BIN$(PEEK n),b=0
 1030 LET b=(a$(1)=”1”)+2*(a$(2)=”1”)+4*(a$(3)=”1”)+8*(a$
 (4)=”1”)+16*(a$(5)=”1”)+32*(a$(6)=”1”)+64*(a$(7)=
 ”1”)+128*(a$(8)=”1”)
 POKE q+n-p,b
 NEXT n

1060 END PROC

An alternative shorter version of line 1(030 is given below. BIN
should be the keyword.

1030 LET b=VAL ("BIN "+a$(8)+a$(7)+a$(6)+a$(5)+a$(4)+a$(3)+
 a$(2)+a$(1))

Robert also asked if I could add a GOTO line, statement command
to Beta Basic. I can't see much call for this, unless you like
confusing programs, but a PROC to do it arrived as one of a big
batch from Lasso Hult, Gothenburg, Sweden. They follow (I rather
like short PROCs - they are easy to understand, and I don't have to
do much typing to get something I can test. Structured programming,
I suppose!)

**
PROC jump - to a line and statement

The PROC alters system variables to achieve its affect. Note: It
clutters up the stack with unused procedure returns.

10 jump 20,2
 20 PRINT 1
 PRINT 2

PRINT 3
 20 DEF PROC jump lno,stat
 DPOKE 23618,lno
 POKE 23620,stat
 END PROC

-5-

PROC edge - "A way to produce your own beautiful borders"

The procedure produces a screen border of any given character
(computer's or UDG). It uses DH's control codes to keep the cursor
in the correct place as the right-hand margin is printed. The PRINT
statement could also include INK or PAPER.

10 KEYWORDS 0
 edge CHR$ 134
 KEYWORDS 1

20 DEF PROC edge a$
 LOCAL b$,c$,d3,a,b
 LET a=21,b=0,b$=STRING$(32,a$),
 c$=STRING$(a,a$+CHR$ 13),
 d$=STRING$(a,a$+CHR$ 10+CHR$ 8)
 PRINT AT b,b;b$;AT a,b;b$;AT b,b;c$;AT b,31;d$
 END PROC

**
PROC byte - splitting integers into high and low bytes

A number of readers have noticed that if you RANDOMIZE x, the
number x is placed in the system variable at 23670/23671 (SEED) as
x-INT(x/256) *256 and INT(x/256). This form can be useful, as it is
the normal way the Z80 handles numbers from 0-65535. (Another way
would be to use the CODES of the two characters in a CHAR$ - these
are in the opposite order: most significant, then least significant
bytes.)

30 DEF PROC byte x
 RANDOMIZE x
 PRINT "LO ";PEEK 23670,"HI ";PEEK 23671
 END PROC

**
PROC key - An impressive "Press any key to continue"

This deceptively simple procedure fills a common need in a good-
looking way. The message scrolls in the bottom part of the screen by
repeatedly moving the current first character of the message to the
end before printing it. The message must be 32 characters long.

80 KEY

90 DEF PROC key
 LOCAL b$
 LET b$="PRESS ANY KEY TO CONTINUE "
 DO

PRINT #0;AT 1,0; PAPER 6;B$
 LET B$=B$(2 TO)+B$(1)
 LOOP UNTIL INKEY$<>""
 END PROC

**
KEYWORDS ON/OFF

These are very simple procedures, but they illustrate something
you may not have thought of any command that might take a shift or
two, or a bit of typing, can be abbreviated to a single letter with
a suitable procedure.

-6-

100 DEF PROC G
 KEYWORDS 0
 END PROC

110 DEF PROC K
 KEYWORDS 1
 END PROC

PROC splay - playing strings

Actually, this last of the Lasse Hult contributions was called
PLAY that would be "tokenised" on a 128K Spectrum. Lasse, Who works
for the Swedish Railroads, writes

"Now, put the dust out of those old song books, or relearn those
children-song s to sing for the kid. Here is PROC (S)PLAY, a note-
simulating PROC even for 48"ers. Just put the notes you want to play
in a long string and follow the simple rules!"

c =simple note of 0.25 sec duration (default value)
 C =same but sharp note (c#)
 c1 =full (1 sec duration),c2 for 1/2 sec, c8 for 1/8 sec
 < =raise one octave
 > =drop one octave
 : =end maker of the string

(I guess the “:” could be added automatically - or you could use
LEN. - Ed.)

10 LET a$=”<CCCedddfeeddc1:"
 splay a$

100 DEF PROC splay a$
 LOCAL b$,L,s,n,m,a,b
 LET b$="cCdDfFgGaAB"
 LET L=0,m=L
 DO UNTIL a$(L+1)=”:”
 LET L=L+1,a=(a$(L)="<”),b=(a$(L)=">”)
 LET m=m+(12*a)-(12*b),L=L+(a OR b)
 LET s=.25 AND CODE a$(L+1)>57
 IF NOT s THEN LET s=1/(VAL a$(L+1))
 130 LET n=INSTRING(1,b$,a$(L))
 BEEP s,n+m
 LET L=L+(CODE a$(L+1)<57)
 LOOP

END PRCC

Beta Basic 4.0 allows some really impressive sounds - and I have
reports of impressive achievement. A BB 4.0 string-playing PROC like
the one above, but using three channels, and interrupt-driven sound,
would be very useful.

-7-

**
ADDING A NEW BETA BASIC COMMAND

Some time ago I got the following letter:

Hi Andy

What is the possibility of using the blanks (B and H) in BB BB.0 for
the two commands INCrease and DECrease? Yes, I can hear you say:
That is easy to do with a line like:

1 DEF PRCC inc REF a: LET a=a+1: END PROC

but to have good use of a command like INC it should not take longer
time to execute than the command: LET num=num+1 and my tests show
that the inc PROC takes about 0.06 sets longer if the DEF PROC is
early in a program and about 0.08 sets longer if the definition is
at the end of a long program. I suppose it is all that passing of
variable names that takes some time to do. So what do you say? The
commands already exist in the Z8O so it should not be so hard to
implement or is that a misjudgment from my side? I'm looking forward
to enjoying your coming newsletters!!!

Dan Olsson, Helsingborg, Sweden

Well, I have been hoarding the last two unused keys or tokens for
something really important - I'm not sure what! On the other hand,
Dan's letter reminded me that some readers might be interested in
adding new BB commands at the machine code level, rather than via
procedures. The main advantage is, of course, speed. Passing
variables does take some time; particularly since Beta Basic is
"grafted on" to Spectrum Basic, rather than a total re-write. (This
saves lots of memory!)

I will describe how to add Dan's INC command. It is not quite as
simple as Dan guessed, since the Z8O INC command just increments a
register or a memory location, whereas we have to check the
command's syntax, find the variable, perhaps give an error message,
and alter two memory locations. (Two memory locations allow us to
deal with positive whole numbers between 0 and 65535. Things get
more complicated if we want to INC negative or floating-point
numbers.) All this would use hundreds of bytes if we wrote it from
scratch, but fortunately the ROM is full of useful routines to
help. Anyone wanting to write their own commands would be well
advised to obtain Ian Logan's ROM Disassembly so that they can see
how things are done. (Actually, more useful and less tedious would
be something like a two page list of important routines and their
entry and exit conditions - but I don't know of one!)

The syntax of all the new Beta Basic keywords is defined in a
table in memory. The interpreter has to find the syntax entries as
fast as possible; since they are of variable length, another table
(a pointer table) is used to supply the location of each entry in
the syntax table. The way this is done only really makes sense in
hexadecimal. The pointer table is at F800H to F824H. The first entry
is for the KEYWORDS command (CHR$ 128). The pointer value is 25H,
and the syntax entry is at F800H+25H. The next entry is for DEF PROC
(CHR$ 129); it has a pointer at F801H of 29H, and the syntax entry
is at F800H+29H. Each syntax entry starts with one or more bytes
which specify the type of

-8-

command. The ROM uses the same system. For example, a byte of "allow
just the command, with no parameters" - e.g. CLS or COPY type. A
byte of 6, then a 0, means "insist on a numeric expression
following" - e.g. BORDER, GO TO or KEYWORDS. There is also a
"miscellaneous" type, specified by a byte of 5. This means that the
command itself must do the syntax check, because it is a one-off,
rather than one of a class of commands. An example would be DATA or
DIM. After the type byte(s) are two bytes giving the address of the
routine for that command, with the least significant byte first in
the usual manner.

The Graphic-B BLANK keyword (CHR$ 145) has a pointer at F811H and
the syntax entry is at F892H (63634 decimal). The entry is 5,
(miscellaneous type) then the address 7306 decimal. If you RANDOMIZE
USR 7306 you will get an error report. This explains why BLANK
normally does nothing; the error is generated when you try to enter
the command, and the line is rejected. If we modify the type byte to
zero (POKE 63634,0) a syntax check will be done for a no-parameter
command, and you will be able to type in the BLANK keyword. The
error, will still be generated when you RUN, however, since that's
what the address 7306 does.

In any case, there is no "numeric variable only" type, so we
will have to use a type byte of 5 (miscellaneous) and provide some
code to check the syntax. The program below does this. It POKEs the
code into the UDG graphics area; you should place it below BB's CODE
instead if you want to incorporate the INC command permanently. See
earlier issues for advice on this.)

10 LET adr=65376
 20 POKE 63634,5
 30 DPOKE 63635,adr
 40 FOR n=adr TO adr+26
 50 READ a
 POKE n,a
 NEXT

60 DATA 205,178,40,253 203,1,118,202,138,28,205,238,252,218,
 46,28,35,35,35,94,35,86,19,114,43,115,201

The assembly language translation of the DATA statement is as
follows, if you are interested:

CALL LOOK VARS ;check: for a variable
 BIT 6,(FLAGS)
 JP Z,N,NONSENSE_IN_BASIC ;give an error if it is a string
 CALL CHECK_END ;check this is the statement end.
 ;Stop here if this is a syntax
 ;check.

JP C,VARIABLE_NOT-FOUND ;error if variable didn't exist.
 INC HL ;The HL register has been set
 INC HL ;to point before the variable's
 INC HL ;value, so advance it.
 LD E,(HL) ;Get the value into
 INC HL ;the DE register.
 LD D,(HL)
 INC DE ;INC value (or DEC if you want a
 LD (HL),D ;DEC command) and shove it back
 DEC HL ;into the variable.
 LD (HL),E
 RET

-9-

You can use the following lines to demonstrate the command:

70 LET test=0
 80 BLANK test
 90 PRINT test
 100 GO TO 80

The command still looks like BLANK, rather than INC, but we will
deal with that in a minute. The new command is considerably faster
than LET test=test+l; just how much faster depends on how you
measure it. I used:

10 DPOKE 23672,0: REM use FRAMES system variable
 20 LET test=0
 20 FOR n=1 TO 1000
 30 BLANK test
 40 NEXT n
 50 PRINT DPEEK(23672)/50

I noted the result, then deleted line 30 and ran again to find
the difference (1.66 sets.). You might prefer 30 REM or 30 (space)
as the basis for comparison. Using: 30 LET test=test+l, minus the
time without line 30, gave 4.86 secs. - so INC is almost - times
faster.

**
MODIFYING YOUR KEYWORDS.

Continuing with the addition of the INC command, we now need to
modify the keyword list so that the former BLANK keyword (graphic B)
is listed as INC, and typed as i-n-c. (Beta Basic 3.0 has two BLANK
keywords - we are altering the first one. Beta Basic 4.0 has a half-
implemented END IF attached to graphic H in place of the second
BLANK.)

There is no reason why you cannot modify the entire keyword list,
provided it does not become too long. (The program checks for this.)
Similar lists exist for the numeric and string function names. You
can find them with INSTRING and MEMORY$ and alter them, as you can
the main keyword list - I leave the details as an exercise for the
student! Each keyword has 128 added to its last letter.

The program below creates a large LET statement at line 110
containing all the keywords. Edit this line, altering BLANK to INC,
then RUN 110 to POKE the new list back into memory.

10 LET a$="110 let a$="""
 20 FOR n=60721 TO 60905
 30 LET p=PEEK n
 40 IF p>127 THEN LET p=p-128
 50 LET a$=a$+CHR$ p
 60 IF PEEK n>127 THEN LET a$=a$+","
 70 NEXT n
 80 LET a$=a$+""""
 90 KEYIN a$
 100 STOP

-10-

120 LET b$=""
 130 FOR n=1 TO LEN a$
 140 IF a$(n+l)="," THEN LET b$=b$+CHR$ (CODE a$(n)+128)
 LET n=n+1
 ELSE LET b$=b$+a$(n)
 150 NEXT n
 160 IF LEN b-$<=185 THEN POKE 60721,b$
 ELSE PRINT "Too long by ";LEN b$-185
 170 STOP

**
MARKING OUT PROCs IN A LISTING.

I think a lot of BB users do not know all the things you can do
with ALTER (the program). Remember to use brackets around a variable
or expression if you want to look for the result of that expression
rather than the expression itself. (Read that again!) For example,
in the lines below we want to alter occurrences of END PROC to make
them stand out in a listing. We could use:

110 ALTER "DEF PROC" TO "DEF PROC------------------"

making sure the DEF PROC is a keyword (Graphic-1). However, the line
will find and alter itself, which means it will only work correctly
once. It is better to use (CHR$ 131) which evaluates to DEF PROC
(try: PRINT CHR$ 131) but which will not be altered, since it is not
actually DEF PROC.

Lines 120 and 130 follow a suggestion of Francisco Riera Alibes
(Barcelona, Spain). The STRING$s can be longer if desired. Lines 140
and 150 are my own preference - I usually have an extra “:” at the
end of a procedure to force a line feed in LIST FORMAT 1 or 2. Oh
yes, these lines don't make much sense all together like this -
execute them one at a time when you have got some PROCs loaded, and
look at the listing afterwards!

120 ALTER (CHR$ 131) TO (CHR$ 131+STRING$(18,"-"))
 130 ALTER (CHR$ 131+STRING$(18,"-")) TO (CHR$ 131)
 140 ALTER (CHR$ 131) TO (CHR$ 131+":")
 150 ALTER (CHR$ 131+":") TO (CHR$ 131)

Another few points about ALTER:

If you want to ALTER "123456" say, prevent the line itself being
altered by using e.g.; ALTER ("123"+"456") TO whatever.

You can ALTER or REF "a(" or "a(x)" but you will not find "a(1)"
(unless it is part of a string) because something which appears in a
listing as:

PRINT a(1)

actually exists in the program as:

PRINT /a/(/1/CHR$ 14/CHR$ 0/CHR$ 0/CHR$ 1/CHR$ 0/CHR$ 0/)

I have used "/" to separate individual characters.

-11-

ANIMATION

Beta Basic's POKE and MEMORY$ features provide a simple means of
animating graphics. I am sure you will be able to apply the basic
idea below to other scenes. I tried for a rotating cube, but I must
have tangled my COS`s and SIN's somewhere, so I gave up and settled
on a doughnut-thing. Altering the values in line 80 will change the
doughnut position, x and y size, and ring thickness. The
illustration shows the doughnut, which is animated to spin at a very
respectable speed by the program. Not shown is a central coloured
shaft. This is red INK on red PAPER in its upper half, so that any
circles there are invisible and appear to pass "behind" the shaft.
The lower half of the shaft has normal INK and circles seem to pass
in front of it.

Animation is achieved by creating each frame in the central third
of the screen, and then storing it in an array (line 50). See the BB
3.0 manual under MEMORY$ (function). Later (line 200) the frames are
POKEd back. Only 4 frames are used here, which gives a surprisingly
good effect. Many games use just 3 frames for character animation.
The array a$ uses about 8K. BB 4.0 owners can use RAM disc arrays of
up to 64K, giving many more frames or larger areas of the screen,
with some sacrifice of speed.

10 DIM a$(4,2048)
 20 LET f=1
 30 FOR z=0 TO PI/16 STEP PI/64
 40 torus z
 50 LET a$(f)=MEMORY$()(18432 TO 20479)
 CLS

LET f=f+1
 NEXT z

60 shaft
 Animate

70 DEF PROC torus ang
 80 LET x=128,y=86,xm=90,ym=20,r=10
 90 FOR c=PI/16+ang TO 2*PI+ang STEP PI/16
 100 CIRCLE x+SINE(c)*xm,y+COSE(c)*ym,r-COSE(c)*6
 110 NEXT c
 120 END PROC

-12-

130 DEF PROC shaft
 140 FOR t=0 TO 9
 PRINT INK 2; PAPER 2;AT t,15;" "
 NEXT t

150 FOR t=10 TO 21
 PRINT PAPER '-;AT t,15;" "
 NEXT t

160 END PROC
 170 DEF PROC animate
 180 DO
 190 FOR f=1 TO 4
 200 POKE 18432,a$(f)
 NEXT f
 210 LOOP
 220 END PROC

**
PROC KEYBOARD - a musical PROC

This contribution is from T. Holland of Whitley Bay, Tyne & Wear.
He says: “..it is a very simple (48k) two octave BEEP Keyboard
malting use of GET and ON. Although very simple it may be of some
interest to those subscribers who have children who "dabble" on the
keyboard."

The notes are on 1-8, 9 is change octave and 0 is exit the PROC.

1 KEYBOARD

100 DEF PROC KEYBOARD
 110 POKE 23609,0
 PRINT AT 11,8; CSIZE 16,32;"KEYBOARD"
 DO

PRINT AT 0,12;"OCTAVE 1"
 DO

GET NUMBER
 ON NUMBER
 BEEP .3,-12
 BEEP .3,-10
 BEEP .3,-8
 BEEP .3,-7
 BEEP .3,-5
 BEEP .3,-3
 BEEP .3,0
 120 LOOP UNTIL NUMBER=9 OR NUMBER=0
 130 PRINT AT 0,12;"OCTAVE 2"
 DO WHILE NUMBER<>0
 GET NUMBER
 ON NUMBER
 BEEP .3,0
 BEEP .3,2
 BEEP .3,4
 BEEP .3,5
 BEEP .3,7
 BEEP .3,9
 BEEP .3,11
 BEEP .3,12
 140 LOOP UNTIL NUMBER=9
 150 LOOP UNTIL NUMBER=O
 160 POKE 2=609,52
 END PROC

-13-

READERS' LETTERS

Dear Dr. Wright,

I particularly like the idea of combining INSTRING and CHAR$, to
look for a particular number in a specific data field. However, the
fact that "#" means "any" when it occurs in the second (or
subsequent) character(s) of an INSTRING search prevents it from
finding a unique number. Is there a handy POKE to disenable the
normal INSTRING usage of "#"?

H.N.S. Wijegoonawardena, Edgware, Middx.

There is. For BB 3.0. POKE 63120,x to change the "any" character to
CHR$ x. Or POKE 63122,0 for no "any" character, and POKE 63122,241
to restore the "any" feature. For BB 4.0, the equivalent code is
part of the "bbc2" file, which is normally loaded via screen memory
to banked RAM. The easiest way to alter it is probably without BB
present:

CLEAR 29999
 LOAD "bbc2" CODE 300000
 POKE 34789,(new "any" character)
 POKE 34791,(0 or 241)
 SAVE "bbc2" CODE 30000,6144

Use the altered "bbc2" file in future. Alternatively, you could try
changing the line 2 loader, inserting the POKES just after "bbc2"
CODE has loaded.

Dear Andy,

What's happening about Beta Basic and the PLUS 3?

(Several readers.)

I have seen one and copied the ROMs for disassembly. (60-odd K to
check through) The manual is nice for techies like myself. The disc
drive works quite nicely, although I was surprised there are no
serial files from Basic. I think quite a number of BB users are
thinking about this machine. The problem for them and me is price.
If it drops below 200 pounds, it should sell O.K. and there would be
a BB for it. If it stays at the launch price, I would be
discouraged. Beta Basic 4.0 has not sold wonderfully, at least
partly because there has been no food of upgrade orders as in the
past. It will need a good price to price loose the majority of 48K
owners from their machines.

Dear Andy,

I frequently use the BETA as a toolkit to refine programs that are
to run without BETA resident and I would therefore like to kill line
0 prior to saving. Is there an easy way?

Andy Hollis, Northwich, Cheshire

Sure! DELETE 0 TO 0 will do it.

-14-

Dear Dr. Wright,

PROC hide in issue 1 or 2, I think ... if you hide a routine, at
line 0, which produces an error ("Failed at:") message from RENUM
(when not at line zero) it will crash after it has been hidden! Not
worth trying to fix, this I would have thought - just a feature to
be noted.

C.A. flash, Bracknell, Berks.

Like many bugs, an unforeseen interaction of several things. . .
BB places a double zero on the stack before a RENUM, and stacks the
line numbers of any "Failed" lines on top. At the end of RENUM, the
messages are printed, down to the double zero, which is junked. Then
a RETurn is made to the next thing on the stack. A stacked line
number of double zero causes havoc...

Dear Andy,

I wonder if you could say something in the next Newsletter regarding
the compatibility of programs written using the 48K version of Beta
Basic with your new 128K version. Can they be used in 128K mode?

Leslie Dewhurst, Leamington Spa, Warcs.

I always try to keep successive versions as compatible as possible.
Your existing programs should run O.K. in 128K mode - Just rather
faster if they use DRAW or CIRCLE. To use the new functions you will
have to MERGE-in a copy of the new line zero.

Dear Sirs,

Where can I PEEK the preset alarm time?

Francesco Stajano, Rome, Italy

PRINT MENORY$() (61202 TO 61209) will do this.

Dear Dr. Wright,

You may remember some time ago I sent you copies of the first of KEY
SOFTWARE's productions. I now enclose a further three programs which
have all been written using BETA BASIC. These programs have been
well received by the many schools which have purchased copies and
have been praised when reviewed in CRASH. As a small token of thanks
for allowing us to use Beta Basic, I'd like to offer a discount to
Beta Basic users who might be interested in educational programs.
...I could give 1 pound off every tape or Microdrive sold to people
who mention the newsletter offer when ordering. Readers can write to
me at the address below to receive details of the programs.

Andy Watson, KEY SOFTWARE, 33 Hilton St., Aberdeen, AB2 3QT

These programs are good, well-documented and cheap! Write to KEY
SOFTWARE if you are interested in educational software for spelling,
decimals, fractions, etc.

-15-

Dear Andy,

As the publisher of program material I often receive modified
programs based upon original material which I often wish to publish.
The biggest problem is extracting all the relevant lines which
modify the original. What I need is a "MERGE/DELETE" viz a MERGE
which will delete all lines the SAME retaining lines which are
different to those in memory. Ah! I hear you say - a file comparison
is required! I've written several but never find them entirely
reliable. I wonder if perhaps either yourself, or maybe fellow
newsletter readers can come up with an idea for me?

I have a small tip for Microdrive users with Interfaces having issue
II ROMs. Location 23791 (COPIES) may be POKEd by a direct command to
save multiple copies of a file. On my BB 3.0 cartridge I have 20
"run" files,5 "Beta-Basic" and 2 "BB". Loading of BB 3.0 is much
quicker than normal. For example, when making a "run" file simply:

POKE 23791,20: SAVE *"m";1;"run" LINE 1

Paul Newman G4INP, 3 Red House Lane, Leiston, Suffolk IP16 4JZ

Paul runs the Sinclair Amstrad Radio User Group (SARUG) which

publishes a bi-monthly newsletter packed with interesting stuff for
radio hams with Sinclair or Amstrad computers. I can't solve his
problem off the top of my head - anyone out there like to have a go?
I have been reduced to comparing two printouts by overlapping them
over a bright light in the past - there must be a better solution!

Thanks for the tip! It is a pity that the multiple copies of a short
file are not distributed evenly around the cartridge. This would cut
the loading time a lot with just 4 or 5 copies. I suppose multiple
copies are more reliable; if a sector is damaged in one copy it can
be read from the next copy. I presume multiple ERASE commands will
be needed to get rid of such files. You imply this only works with
version II ROMS - true?

Dear Sirs,

Having been an enthusiastic user of your Beta Basic for some time, I
am now considering whether to buy an Amstrad PC 1512. I have however
been surprised (and dismayed) to learn that of its 512K RAM, only
21k is available for use with its own Locomotive Basic 2. I am
therefore wondering whether you have any plans to market a version
of Beta Basic to run on the Amstrad, which would be able to mane
full use of the 512K RAM?

John Loncaster, Humberside.

I am not surprised you are dismayed! But I find the situation rather
amusing... It would be a lot of work to convert BB to another CPU
chip, and make it independent of the Spectrum's ROM. I considered
converting Spectrum Basic for the Amstrad CPC and PC, machines. They
have Z80 "brains", and the ability to switch in RAM in the lower
part of memory occupied by ROM on the Spectrum, so a modified
Spectrum ROM code could be loaded there. Unfortunately, this would
entail some use of copyright Spectrum ROM code - and Amstrad won't
allow this! (I asked?). A pity - it would have allowed a lot of
people to transfer programs, and it, could have been most of the
work or converting Beta Basic to those machines.

-16-

Dear Andy,

Concerning newsletters Nos. 4 and 5, I have been using PROCS dump
and rotate to print the screen produced by PROC hilite. However,
I've found that the screen is not dumped correctly unless PROC
hilite contains a LOCAL n statement after the DEF PROC. Without
this, the address of the first byte of data passed by "dump" to
"rotate" is altered by "rotate". The difference seems to be 19
bytes. Is this due to the FOR... NEXT control variable being
deleted?

Keith Davies, St. Albans, Herts.

Thanks. You are correct. Adding a LOCAL n to hilite ensures that n
is deleted earlier and cures the problem.

Dear Dr. Wright,

I have not been able to save data that is made up of screen blocks
using GET. Whenever I try to reload them I get the invalid colour
error. Is there a reason for this or am I doing something wrong?

A.L. Storm, South Dunedin, New Zealand.

If you tried something like:

GET a$,100,100
 SAVE "name" DATA a$()

then the problem is the Spectrum Basic bug mentioned in issue 5 that
allows simple strings to be saved, but not loaded back correctly.
The easiest solution is probably something like this:

GET a$ (something)
 DIM b$(LEN a$)
 LET b$=a$
 SAVE "name" DATA b$()

A better solution when the screen block is large (making the DIM and
assignment expensive on memory) is one suggested by reader Bo Leuf
of Gothenburg, Sweden. The nature of the bug means that if you add
leading characters which mimic part of an array "header" to the
string before saving it, the re-loaded string will be of array type,
but intact; e.g. before saving:

LET a$=CHR$ 1+CHAR$(LEN a$)(2)+CHAR$(LEN a$)(1)+a$

or if memory is tight, reduce the space needed temporarily for the
assignment by:

LET b$=CHR$ 1+CHAR$(LEN a$) (2)+CHAR$(LEN a$)(1)
 JOIN b$ TO a$(1)

The reloaded string, now a single-dimensioned array, can be
PLOTed back to the screen directly.

BETASOFT, 92 OXFORD ROAD, MOSELEY, BIRMINGHAM, B13 9SQ ENGLAND

Scanned, Typed, OCR-ed, and PDF by
Steve Parry-Thomas 26th September 2004.
This PDF was created to preserve this

Newsletter for the future.
For all ZX Spectrum, Beta Basic
And www.worldofspectrum.org users

(PDF for Michael & Joshua)

http://www.worldofspectrum.org/

